209 research outputs found

    Administrative Law-Primary Jurisdiction-Availability of Common-Law Reparations Remedy Following Commission Finding of Unreasonable Practice Under the Motor Carrier Act

    Get PDF
    The petitioner delivered goods to respondent, a common carrier by motor vehicle, for shipment from Buffalo, New York, to New York City, with the route of shipment left unspecified. The goods were shipped over the carrier\u27s interstate route at a higher tariff filed with the Interstate Commerce Commission rather than over its intrastate route at the lower tariff filed with the New York Public Service Commission. Alleging causes of action under the Motor Carrier Act and at common law, the petitioner brought a postshipment action in a federal district court seeking reparation of the difference paid. The court, after a finding by the Interstate Commerce Commission that the carrier\u27s routing practice was unreasonable, dismissed the action on the ground that the act neither provided a reparations remedy nor preserved any cause of action existing at common law. The court of appeals affirmed, on the same grounds, one judge dissenting. On certiorari, held, reversed, three Justices dissenting. The complaint, coupled with the Commission\u27s finding that the carrier\u27s selection of the more costly route was an unreasonable practice, states a justiciable common-law claim preserved by the savings clause of the act. Hewitt-Robins, Inc. v. Eastern Freight-Ways, Inc., 371 U.S. 84 (1962)

    Coronal loops and active region structure

    Get PDF
    We intercompared synoptic Hα, Ca K, magnetograph and Skylab soft X-ray and EUV data for the purpose of identifying the basic coronal magnetic structure of loops in a ‘typical’ active region and studying its evolution. We focussed on a complex of activity in July 1973, especially McMath 12417. Our principal results are: (1) Most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong fields or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where Hα fibrils marked the direction of the loops. We conclude that a typical loop brightens in response to magnetic field activity at its feet, which heats the plasma. This suggests that the loop acts as a trap for gas convected from its base

    The solar flares of August 28 and 30, 1966

    Get PDF
    Observatory data correlation and evaluation on solar flares of Aug. 28 and 30, 196

    Coronal loops and active region structure

    Get PDF
    We intercompared synoptic Hα, Ca K, magnetograph and Skylab soft X-ray and EUV data for the purpose of identifying the basic coronal magnetic structure of loops in a ‘typical’ active region and studying its evolution. We focussed on a complex of activity in July 1973, especially McMath 12417. Our principal results are: (1) Most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong fields or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where Hα fibrils marked the direction of the loops. We conclude that a typical loop brightens in response to magnetic field activity at its feet, which heats the plasma. This suggests that the loop acts as a trap for gas convected from its base

    Theoretical Transmission Spectra During Extrasolar Giant Planet Transits

    Get PDF
    The recent transit observation of HD 209458 b - an extrasolar planet orbiting a sun-like star - confirmed that it is a gas giant and determined that its orbital inclination is 85 degrees. This inclination makes possible investigations of the planet atmosphere. In this paper we discuss the planet transmission spectra during a transit. The basic tenet of the method is that the planet atmosphere absorption features will be superimposed on the stellar flux as the stellar flux passes through the planet atmosphere above the limb. The ratio of the planet's transparent atmosphere area to the star area is small, approximately 10^{-3} to 10^{-4}; for this method to work very strong planet spectral features are necessary. We use our models of close-in extrasolar giant planets to estimate promising absorption signatures: the alkali metal lines, in particular the Na I and K I resonance doublets, and the He I 23S2^3S - 23P2^3P triplet line at 1083.0 nm. If successful, observations will constrain the line-of-sight temperature, pressure, and density. The most important point is that observations will constrain the cloud depth, which in turn will distinguish between different atmosphere models. We also discuss the potential of this method for EGPs at different orbital distances and orbiting non-solar-type stars.Comment: revised to agree with accepted paper, ApJ, in press. 12 page

    Joint vector magnetograph observations at BBSO, Huairou Station and Mees Solar Observatory

    Get PDF
    Joint vector magnetograph observations were carried out at Big Bear Solar Observatory (BBSO), Huairou Solar Observing Station (Huairou), and Mees Solar Observatory (MSO) in late September 1989. Comparisons of vector magnetograms obtained at the three stations show a high degree of consistency in the morphology of both longitudinal and transverse fields. Quantitative comparisons show the presence of noise, cross-talk between longitudinal field and transverse field, Faraday rotation and signal saturation effects in the magnetograms. We have tried to establish how the scatter in measurements from different instruments is apportioned between these sources of error

    Heating of the Solar Corona by Dissipative Alfven Solitons

    Get PDF
    Solar photospheric convection drives myriads of dissipative Alfven solitons (hereinafter called alfvenons) capable of accelerating electrons and ions to energies of hundreds of keV and producing the X-ray corona. Alfvenons are exact solutions of two-fluid equations for a collisionless plasma and represent natural accelerators for conversion of the electromagnetic energy flux driven by convective flows into kinetic energy of charged particles in space and astrophysical plasmas. Their properties have been experimentally verified in the magnetosphere, where they accelerate auroral electrons to tens of keV.Comment: 4 pages, 4 color figures, accepted for publication in Phys. Rev. Let

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (≥1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    Correspondence between solar fine-scale structures in the corona, transition region, and lower atmosphere from collaborative observations

    Get PDF
    The Soft X-Ray Imaging Payload and the High Resolution Telescope and Spectrograph (HRTS) instrument were launched from White Sands on 11 December 1987 in coordinated sounding rocket flights to investigate the correspondence of coronal and transition region structures, especially the relationship between X-ray bright points (XBPs) and transition region small spatial scale energetic events. The coaligned data from X-ray images are presented along with maps of sites of transition region energetic events observed in C IV (100,000 K), HRTS 1600 A spectroheliograms of the T sub min region and ground based magnetogram and He I 10830 A images
    • …
    corecore